Лампа накаливания это какой источник света
Перейти к содержимому

Лампа накаливания это какой источник света

  • автор:

Лампа накаливания. Характеристики ламп накаливания.

Лампа накаливания — это электрический источник света, который излучает световой поток в результате накала проводника из тугоплавкого металла (вольфрама). Вольфрам имеет самую высокую температуру плавления среди всех чистых металлов (3693 К). Нить накала находится в стеклянной колбе, заполненной инертным газом (аргоном, криптоном, азотом). Инертный газ предохраняет нити накаливания, от окисления. Для ламп накаливания небольшой мощности (25 Вт) изготавливают вакуумные колбы, которые не заполняются инертным газом. Стеклянная колба препятствует негативному воздействию атмосферного воздуха на вольфрамовую нить.

Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения.

Лампа накаливания. Характеристики ламп накаливания.

Разновидности ламп накаливания.

Лампы накаливания делятся на:

  • Вакуумные;
  • Аргоновые (азот-аргоновые);
  • Криптоновые (+10 % яркости от аргоновых);
  • Ксеноновые (в 2 раза ярче аргоновых);
  • Галогенные (состав I или Br, в 2,5 раза ярче аргоновых, высокий срок службы);
  • Галогенные с двумя колбами (улучшенный галогенный цикл за счёт лучшего нагрева внутренней колбы);
  • Ксенон-галогенные (состав Xe + I или Br, до 3х раз ярче аргоновых);
  • Ксенон-галогенные с отражателем ИК-излучения;
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. (новинка)

Достоинства и недостатки ламп накаливания.

  • невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.
  • большая яркость (негативно воздействует на зрение);
  • небольшой срок службы — до 1000 часов;
  • низкий КПД. (только десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток) остальная энергия преобразуется в тепловую.

Характеристики ламп накаливания.

Световой поток – это физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения.

Световая отдача – это отношение излучаемого источником светового потока к потребляемой им мощности измеряется в люменах на ватт (лм/Вт). Является показателем эффективности и экономичности источников света.

Люмен – это единица измерения светового потока, световая величина.

Лампа накаливания это какой источник света

Источники света: что нам светит

Источники света — один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп — компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

освещенность и цветовая температура

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» — 600 лм, а натриевая лампа мощностью 100 Вт — 10 000 лм.

У разных типов ламп разная световая отдача, определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуруцв, единица измерения — градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает цветовую температуру для той или иной установки. Комфортная среда сильно зависит от того, какое освещение в помещении «тёплое» или «холодное» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача — важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Тцв меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных световых источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы, имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 — в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы — основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Лампы накаливания

характеристики ламп накаливания

Вольфрамовая спираль в колбе разогревается под действием электрического тока. Для сокращения скорости распыления вольфрама и соответственно увеличения срока службы лампы колба наполняется инертным газом. По принципу действия лампа накаливания относится к тепловым источникам света, т. е. значительная доля потребляемой энергии расходуется на тепловое и инфракрасное излучение.

Типичная для ламп накаливания световая отдача 10–15 лм/Вт, а срок службы редко превышает 2000 часов. Достоинства этих ламп: низкая цена и качество света (Тцв=2700, Ra=100). Сплошной спектр качественно воспроизводит цвета окружающих предметов. Лампы накаливания постепенно вытесняются разрядными источниками света и светодиодными лампами.

Галогенные лампы накаливания

отличие галогенных ламп

Добавление галогенов в колбу лампы накаливания и использование кварцевого стекла позволили сделать серьезный шаг вперёд, получив новый класс источников света — галогенные лампы накаливания. Световая отдача современных ГЛН составляет 30 лм/Вт. Типичное значение цветовой температуры света 3000К и индекс цветопередачи 100. «Точечная» форма источника света с помощью отражателей даёт управлять пучком света.

Получающийся при этом искристый свет определил приоритет таких ламп в интерьерном дизайне, где они заняли лидерство. Ещё одно преимущество в том, что количество и качество света лампы постоянно на протяжении срока службы. Популярны низковольтные «галогенки» мощностью 10–75 Вт с отражателем, который фокусирует луч в угле 10–40°.

Недостатки ГЛН очевидны: малая световая отдача, короткий срок службы (в среднем 2000–4000 часов), необходимость использования (для низковольтных) понижающих трансформаторов. Там, где эстетический компонент важнее экономического, с ними приходится мириться.

Люминесцентные лампы

люминисцентные лампы преимущества

Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, которая наполнена инертным газом и малым количеством ртути. При включении в трубке возникает дуговой разряд, и атомы ртути начинают излучать видимый свет и ультрафиолет. Нанесённый на стенки трубки люминофор под действием ультрафиолетовых лучей излучает видимый свет.

Основа светового потока лампы — излучение люминофора, видимые линии ртути составляют лишь малую часть. Многообразие люминофоров (смесей люминофоров) позволяет получить источники света с различным спектральным составом, который определяет цветовую температуру и индекс цветопередачи.

Люминесцентные лампы дают мягкий, равномерный свет, но его распределением в пространстве трудно управлять из-за большой поверхности излучения. Для работы люминесцентных ламп необходима специальная пускорегулирующая аппаратура. Лампы долговечны — срок службы до 20 000 часов.

Световая отдача и срок службы сделали их самыми распространёнными источниками света в офисном освещении.

Компактные люминесцентные лампы

энергосберегающие лампы люминисцентные

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Разрядные лампы высокого давления

лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Светодиодные лампы

виды светодиодных ламп

Светодиоды — полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Читайте также:

/upload/iblock/dc1/q06t47lrjzh8zfq6za2no0u2ntjzpzb8.jpg

Светильники. Что нужно знать о классификации светильников

/upload/iblock/ae9/9zksrce92jebwoecsh2nfhcuv2e5779y.jpg

Классический торшер: а зачем нужны торшеры?

/upload/iblock/e08/myq0kmnujfu3b5c6ngq7e42k4v9a19ub.jpg

5 фактов о цветовой температуре. Какую выбрать?

/upload/iblock/913/8ivgox6wl73j20okkgsbuf3qw7eeqn1h.jpg

Настольный светильник: декор или удобство?

/upload/iblock/324/zp7faucrh2blsud7156b9c6ljva87xnw.jpg

Бра: настенные светильники в интерьере

/upload/iblock/e31/3f44p1tyt18ianw02w07xu98g2wa37gb.jpg

Подсветка для картин: освещаем предметы искусства

/upload/iblock/54c/yoz8o2kwq332q1xuihsav08c1ij35t8u.png

/upload/iblock/d22/e38j2z3ve143m8t0qosnvp1wgks16j0d.jpg

Богемский хрусталь:знаменитом чешском стекле

/upload/iblock/b11/c67xytdo931vu3gbqavshgx3lxphqtpn.jpg

Лесная жизнь, увиденная светильником Don Quixote

/upload/iblock/db1/n32yc4rbeeplhwpkxfoh1ifxclnknqkz.jpg

Школа светодизайна: освещение загородного дома

/upload/iblock/854/v5ldvsmu70gr20jv4tp0nw5hpwsqg4q9.jpg

Школа светодизайна: освещение в детской комнате

/upload/iblock/34f/z09dhn73a2ftd8mi5sd0jv7eb82in6pr.jpg

Подвесные светильники: какие бывают и как используют

/upload/iblock/635/z7tewamkezd2u5i1m8ja8wixb2jdby76.jpg

Прошлое, настоящее и будущее освещения. Важные моменты развития.

/upload/iblock/23a/0u53vci89eoj5dyamztfj0qqi5b0drn9.jpg

Встраиваемые светильники: компактное и популярное решение

/upload/iblock/ce9/174xq8nafstkj4ki3ubal21vtsr9b0kn.jpg

Материалы для светильников: стекло

/upload/iblock/122/7npogm3xwx1xopm8nlbar6fd6mtmzr62.jpg

Линзы и их применение в работе со светом

/upload/iblock/50f/ljujdynml6lxnvg0gt81wn206kovk5zk.jpg

Светильники в кинематографе: а вы их заметили?

/upload/iblock/8fd/khex7exyv26l5ma35zdx7uzrli8uve8m.jpg

Энергосбережение: что это такое и зачем нужно

/upload/iblock/045/s3ylgnfjobo8p17yfrdqf223s9lkm3j3.jpg

Оригинальные светильники: 5 историй о шедеврах искусства света

/upload/iblock/82c/3qnph51902fhupy16hvjy6uagkcxisd9.jpg

Материалы для светильников: дерево

/upload/iblock/575/322hqxzbmhe3677anwwx9vs6htfmbwk1.jpg

Управление светом. Немного теории.

/upload/iblock/65a/9buqddtt18i5voegfys5dcmjmufclbts.jpg

Светильники в стиле хай-тек: как попасть в будущее уже сейчас?

/upload/iblock/b74/6073a7xlszr31gf57sjg2cu9hqzz5jua.jpg

Светильники Foscarini: итальянские мастера материалов и технологий

/upload/iblock/979/6k1ev0iipx4959arq5871dr0wnvape40.jpg

Классические светильники: стиль на все времена для исключительных интерьеров

/upload/iblock/7a6/t3od3ff13h03dzirux5t3uxgcpdig4sh.jpg

Материал для светильников: пластик

/upload/iblock/211/70fexzy1ba8blkg6fxttc616kvvol5pv.jpg

3 причины использовать светодиодный источник света

/upload/iblock/087/km0eiacadqrnqvvp7zpumcfw3zyzedwb.jpg

7 основных ошибок при выборе освещения для квартиры

/upload/iblock/586/7jdicc4xqjfsose84m204vz1or3rs516.jpg

5 популярных стилей в интерьерах: какой выбрать

/upload/iblock/482/afa4q0ubercummwjnj8adh8oc3dk8fos.jpg

8 основных правил при подборе светильника для интерьера. Методология выбора

/upload/iblock/871/ic7m721no7oks4yn5sefbv86vqysloge.jpg

Как правильно организовать освещение? Советы про свет и цвет.

5 функций освещения в частных интерьерах

/upload/iblock/c89/vko7l738woqxlbps6pqb1fchrwr1e6l1.jpg

/upload/iblock/c6a/0dnaxos2gwz4dg18mp6284wsstosynoj.jpg

Настольные зеленые лампы

/upload/iblock/b13/s0s8np6fy0h22nwocr3yfcubovl80qvi.jpg

7 фактов о свете: комфортное освещение для ваших глаз

/upload/iblock/00b/ju5t6nsfu82rg4dcl9rnlsetzekvkn2j.jpg

Рассеянный (диффузный) и акцентный (направленный) свет

/upload/iblock/02e/sk85v3z3828k4a9dsm6u2yu6bi72hc75.jpg

/upload/iblock/07b/v3axwfsjd0w6ul7c2ii28ubmi2xpx6og.png

Фестиваль света в Амстердаме: 53 дня волшебства

/upload/iblock/0d7/x2n596nbks8zkmq9prco75gli4sz4xsw.png

Освещение детской комнаты: правила, которые не стоит забывать

/upload/iblock/6cd/16j02eatycpapwsvvyw3n3ev89ghtjs4.png

7 правил грамотного освещения маленьких квартир

/upload/iblock/2b0/yu53kpltnv0vv459v2gwxrbijgpb8r4v.jpg

7 необычных интерьерных светильников для спальни

/upload/iblock/63c/9mhw7j77pdratzv8ochwyutl7wsiyqy8.jpg

Светодиодная или люминесцентная: какие лампы самые экологичные и безопасные

/upload/iblock/6d4/498zvwkzw0lv9n5qi43dr53j86ghm6jw.jpg

Освещение на кухне: правильный свет для приятного аппетита

/upload/iblock/d4e/h59on0f9h5fzq2gs4lxcnd9ymf9bh10u.jpg

«И кто его знает, чего он моргает…» 5 причин мерцания светодиодных лампочек

/upload/iblock/a2b/fgyhlaeo6v6rye9pm5csqigai8peqc5l.jpg

Переходите на светлую сторону: «Звездные войны» в светотехническом обличии

/upload/iblock/963/raagl6mvg8bnwkmhmwx1mloyww1kbxcb.jpg

Территория светоискусства: шоу-румы известных брендов в нашем салоне

/upload/iblock/1a8/9rsbo15fic94tqsa914fzylhxfdsmkch.jpg

6 самых мужественных светильников от известных дизайнеров

/upload/iblock/775/gimjxbqsrxbnkiabyoohdfzfju1c9h6c.jpg

Лампа Эдисона как важный атрибут стиля ретро

/upload/iblock/b10/dbw3sxn93a5pnyhvxles4c3ah8npqush.jpg

Релакс и уют: как создать идеальное освещение в ванной

/upload/iblock/527/0izuyhbzguil13xv5jpvf83bnvbqcxnl.jpg

Трековые светильники: новое слово в интерьере

/upload/iblock/e8f/g2zcbxf1azfvyssxbk4t399h5ug7xr1v.jpg

Самоизоляция: как сохранить хорошее настроение не выходя из дома

/upload/iblock/2df/ukjfzh8ztoutjpbvw9803kr2xe102rs2.jpg

Гармоничное освещение жилых пространств: секреты световых иллюзий

/upload/iblock/3b8/01dr50ipcspsjaknlgegavtpsh3704z2.jpg

Пять советов, как создать правильное многоуровневое освещение

/upload/iblock/309/f4ctvpbzjmlwlvfcq1rlj6cdl24bc09q.jpg

Изящность, простота, эргономика Flos: история и современность

/upload/iblock/5cd/vh7hxcktvuvkxiurojlzl272e8iwj2rj.jpg

Минимализм, геометрия, черный цвет – все о тенденциях светодизайна в 2020 году

/upload/iblock/5fc/whywht286r5ea8mnyimtbg4gxtejq2uz.jpg

Бра: многовековая история и современные тенденции

/upload/iblock/874/ktihrzx151ujgxgsilmw3wp6h2yu5uci.jpg

Переносной светильник: как выбрать удобный, стильный и надежный

/upload/iblock/d54/q616wj8idsqn78d5g6he07ombqbt1mbh.jpg

Датский шедевр: шествие во времени

/upload/iblock/ad2/wol5os4kd5niflrwlpx0985lxfymr32j.jpg

Новый взгляд на светодизайн в 2020 году

/upload/iblock/2b5/e2o2jpfb5z33zer9dolzqdu6ufhz1p7t.jpg

Flos Oblique: настольная лампа в новом свете

/upload/iblock/34f/x7b2plm9mm9ho429594vbq5wx6252lrl.jpg

Напольные светильники Vibia Flat: новый взгляд на интерьерное освещение

/upload/iblock/154/metvaj1yyeeo565nl4fup2viehce1z0r.jpg

Настольный светильник La Lampe Frechin: магия в боросиликатной трубке

/upload/iblock/5b4/w4bo9yn5yr1vq3v18u092k8yqcmaw2zb.jpg

Настенные светильники: выбор дизайнеров

/upload/iblock/609/8z48tmabil6wiwh0z0h38o5frsm1yez0.jpg

Подвесные светильники Louis Poulsen как отдельный вид искусства

/upload/iblock/13c/fhqw7uv4nbnau02f63d4p3390wj917cv.jpg

Marset в своем репертуаре: новые светильники испанского бренда уже в нашем шоу-руме

В мире уличных светильников: как выбрать идеальное освещение придомовой территории

/upload/iblock/c80/e5qmfrteb9qze1y28jnw5wjlgo9hn7rd.jpg

Больше цвета: новые светильники Flos в салоне на Малой Ордынке

/upload/iblock/617/vpn0fxn3vo5t5dwpefccjm9e6eklq55g.jpg

Artemide: от рождения и до сегодняшнего дня

/upload/iblock/2b7/pugu5rprz2hj752o1t5hr4613hepl6d3.jpg

Catellani & Smith: когда высокие амбиции оправданы

/upload/iblock/0a1/5ioo16f0o0zx2y9s13zv1jwhkbw8efph.jpg

Не торшерами едиными: о видах и возможностях напольных светильников

/upload/iblock/a30/76yb1aeukek0boyu04i7uroxjuz85psb.jpg

Студия Nendo: видеть волшебное в обыденном

/upload/iblock/320/fvljuh5lfn9k43fxh6e00w4w5qyag1kw.jpg

Освещение для гостиной в современном стиле: правила выбора

/upload/iblock/db6/53laymeptre8glbxd4pmeggn78iz28dx.jpg

Освещение гостиной в стиле прованс: что нужно учесть при выборе светильников

/upload/iblock/7bb/34h7m2c0rkuwy7hubbj6w2s8ixt9k0pu.jpg

Освещение гостиной в скандинавском стиле

/upload/iblock/924/d5fiyv100gp21vl884mqe3rhdjhpidom.jpg

Скользящий свет: особенности и преимущества трековых систем освещения

/upload/iblock/0c5/lpup0likm32cqga7z93kcpfd42qogwik.jpg

Выбор освещения для спальни: советы от экспертов светодизайна

Все о фасадных светильниках: виды, типы, приемы освещения

/upload/iblock/195/uxx6ahol9d47r43bbr1ma4czyuy8b0nf.jpg

Дерево в дизайне светильников: натуральная роскошь

/upload/iblock/0fb/zjog98ud0tr3u2cev1fqp88yltmdphmk.jpg

Полная противоположность: простые и сложные формы светильников как ключевые тренды этого года

/upload/iblock/6c2/46v7h25n8zl667hwsjxywm868ztehnh1.jpg

Люстры с подвесками: роскошь, которая требует особого подхода

/upload/iblock/e65/itok82211mynani072be73b0mkc0xoyy.jpg

Как выбрать настольную лампу: советы дизайнеров

/upload/iblock/0d1/h523pqfki3jith4aq6lqk1myrdz73aws.jpg

Итальянские светильники: за что они ценятся во всем мире

/upload/iblock/816/e6qzz54oz5a78yvahbim5ne3ax5rh52o.jpg

Не дизайном единым: функциональные критерии выбора освещения

/upload/iblock/44d/xyp19b940qpqhm2zoifz5d5ckf4fxgj7.jpg

Антикварные светильники: дух старины в вашем интерьере

Artichoke: люстра, которая заслуженно стала легендой

/upload/iblock/fad/z0ojgsdd4e8ftia95djpdwbisz1utorj.jpg

Как реставрируют антикварные светильники

/upload/iblock/f0d/0110iya3fmppyiiqiiuxtsmnfhwe064b.jpg

Антикварные светильники рубежа ХIХ–ХХ веков: имперское величие

/upload/iblock/049/x84xv1rpu60eeeyk19ipodeomf2z0p32.jpg

Свет из глубины прошлого: старинные лампы на керосине тогда и сейчас

/upload/iblock/0a4/4hmltb4wr1ivxnqqx5og8shrdgrub920.jpg

Вдохновение в кусочках стекла: Тиффани сквозь время

/upload/iblock/822/o6u5uzbbgmn0yw7p9ygy4eg1so9xnn3t.png

Davide Groppi – премиальные светильники для ресторанов и кафе

/upload/iblock/59c/wute0vaddywjkwk94nb8cxyef9oejmin.png

Современный свет по-испански

/upload/iblock/840/bliv1rvq4r2dfvgw8ks20syb4l1h3qbf.png

Новинки современного стиля от Catellani&Smith и Flos: светильники, которые удивляют

Конструкция, технические параметры и разновидности ламп накаливания

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

Лампа накаливания отличается простотой конструкции

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Разогретая до высокой температуры вольфрамовая нить

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Конструкция лампочки накаливания

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Схема работы галогеновых ламп накаливания

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Наибольшая световая отдача у ламп накаливания мощностью 75 Вт

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Световой поток ламп накаливания не утомляет глаза

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.
  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Характеристики различных типов ламп накаливания

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.
  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.

Вот несколько рекомендаций по продлению срока службы ламп накаливания:

  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите последовательно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.

Лампа накаливания

Ла́мпа нака́ливания — электрический источник света, в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама.

Содержание

Принцип действия

В лампе используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 K (температура поверхности Солнца) свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Температура в 5771 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления — вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

Для оценки данного качества света используется цветовая температура. При типичных для ламп накаливания температурах 2200—3000 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен и меньше подавляет естественную выработку мелатонина [1] , важного для регуляции суточных циклов организма и нарушение его синтеза негативно сказывается на здоровье.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкция

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель — звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы — как правило, в ножке. Назначение предохранителя — предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга, которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже — криптон Kr или ксенон Xe (молярные массы: N2 — 28,0134 г/моль; Ar: 39,948 г/моль; Kr — 83,798 г/моль; Xe — 131,293 г/моль).

Особой группой являются галогенные лампы накаливания. Принципиальной их особенностью является введение в полость колбы галогенов или их соединений. В такой лампе испарившийся с поверхности тела накала металл вступает в соединение с галогенами, и затем возвращается на поверхность нити за счёт температурного разложения получившегося соединения. Такие лампы имеют большую температуру спирали, больший КПД и срок службы, меньший размер колбы и другие преимущества.

Тело накала

Формы тел накала весьма разнообразны и зависят от функционального назначения ламп. Наиболее распространённым является из проволоки круглого поперечного сечения, однако находят применение и ленточные тела накала (из металлических ленточек). Поэтому использование выражения «нить накала» нежелательно — более правильным является термин «тело накала», включенный в состав Международного светотехнического словаря.

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама, иногда осмиево-вольфрамового сплава. Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя).

Электротехнические параметры

Лампы изготавливают для различных рабочих напряжений. Сила тока определяется по закону Ома (I=U/R) и мощность по формуле P=U·I , или P=U²/R. Т. к. металлы имеют малое удельное сопротивление, для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40—50 микрон.

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять — четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу — при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растет) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока. При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

Форма цоколя с резьбой обычной лампы накаливания была предложена Джозефом Уилсоном Суоном. Размеры цоколей стандартизованы. У ламп бытового применения наиболее распространены цоколи Эдисона E14 (миньон), E27 и E40 (цифра обозначает наружный диаметр в мм). Также встречаются цоколи без резьбы (удержание лампы в патроне происходит за счёт трения или нерезьбовыми сопряжениями — например, байонетным) — британский бытовой стандарт, а также бесцокольные лампы, часто применяемые в автомобилях.

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях — 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) [2] . Также, аналогично Европе, встречаются цоколи без резьбы.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы, выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения, конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение — 12, 24 или 36 (42) В. Область применения — ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы, выпускаемые в окрашенных колбах. Назначение — иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10—25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком ), их недостаток — быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации — пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН — локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы — чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6—220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов, к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы — разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первая цифра означает рабочее напряжение в вольтах, вторая — силу тока в миллиамперах;
  • Фотолампа, перекальная лампа — разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400К, по сравнению с 2700К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
    • Пилотное освещение — напряжение снижено на 20-30 % с помощью ЛАТРа. При этом лампа работает с недокалом и имеет низкую цветовую температуру.
    • Номинальное напряжение. [3]

    История изобретения

    • В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью) [5] .
    • В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.
    • В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. [6][7]
    • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно. 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
    • В 1875 годуВ. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически). изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
    • Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
    • В 1890-х годахА. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов [8] . Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз [9] . Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом) [10] .
    • С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна) [11]
    • В 1904 годувенгры Д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году. [12]
    • В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric. В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
    • В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
    • Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными, точнее — тяжёлыми благородными газами (в частности — аргоном), что существенно увеличило время их работы и повысило светоотдачу. [13]

    КПД и долговечность

    Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5 %.

    С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

    Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течение половины периода.

    Так как стоимость потребленной за время службы лампой накаливания электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

    Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается, и лампа выходит из строя.

    Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода устройства плавного запуска.

    Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

    Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

    Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. [14] Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

    Тип Относительная световая отдача % Световая отдача (Люмен/Ватт)
    Лампа накаливания 40 Вт 1,9 % 12,6 [15]
    Лампа накаливания 60 Вт 2,1 % 14,5 [15]
    Лампа накаливания 100 Вт 2,6 % 17,5 [15]
    Галогенные лампы 2,3 % 16
    Галогенные лампы (с кварцевым стеклом) 3,5 % 24
    Высокотемпературная лампа накаливания 5,1 % 35 [16]
    Абсолютно чёрное тело при 4000 K 7,0 % 47,5 [17]
    Абсолютно чёрное тело при 7000 K 14 % 95 [17]
    Идеально белый источник света 35,5 % 242,5 [16]
    Идеальный монохроматический 555 nm (зелёный) источник 100 % 683 [18]

    Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме «груши», популярных в России, цоколь E27, 220В. [19]

    Мощность (Вт) Световой поток (лм) [19] Световая отдача (лм/Вт)
    200 3100 15,5
    150 2200 14,6
    100 1360 13,6
    75 940 12,5
    60 720 12
    40 420 10,5
    25 230 9,2
    15 90 6

    Разновидности ламп накаливания

    Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

    • Вакуумные (самые простые)
    • Аргоновые (азот-аргоновые)
    • Криптоновые (примерно +10% яркости от аргоновых)
    • Ксеноновые (в 2 раза ярче аргоновых)
    • Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)
    • Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)
    • Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)
    • Ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
    • Накаливания с покрытием преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

    Преимущества и недостатки ламп накаливания

    Преимущества:

    • налаженность в массовом производстве
    • малая стоимость
    • небольшие размеры
    • отсутствие пускорегулирующей аппаратуры
    • нечувствительность к ионизирующей радиации
    • чисто активное электрическое сопротивление (единичный коэффициент мощности)
    • быстрый выход на рабочий режим
    • невысокая чувствительность к сбоям в питании и скачкам напряжения
    • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
    • возможность работы на любом роде тока
    • нечувствительность к полярности напряжения
    • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
    • отсутствие мерцания при работе на переменном токе (важно на предприятиях).
    • отсутствие гудения при работе на переменном токе
    • непрерывный спектр излучения
    • приятный и привычный в быту спектр
    • устойчивость к электромагнитному импульсу
    • возможность использования регуляторов яркости
    • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату

    • низкая световая отдача
    • относительно малый срок службы
    • хрупкость, чувствительность к удару и вибрации
    • бросок тока при включении (примерно десятикратный)
    • при термоударе или разрыве нити под напряжением возможен взрыв баллона
    • резкая зависимость световой отдачи и срока службы от напряжения
    • лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 25 Вт — 100 °C, 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается ещё сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут. [20]
    • нагрев частей лампы требует термостойкой арматуры светильников
    • световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %. Включение электролампы через диод, что часто применяется с целью продления ресурса на лестничных площадках, в тамбурах и прочих затрудняющих замену местах, ещё больше усугубляет её недостатки [какие?] .

    Ограничения импорта, закупок и производства

    В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные, светодиодные, индукционные и др.) лампы.

    1 сентября 2009 года в Евросоюзе в соответствии с директивой 2005/32/EG вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 года запрещены лампы мощностью 100 Вт и более, ламп с матовой колбой 75 Вт и более (с 1 сентября 2010 года [21] ) и др. Ожидается, что к 2012 году будут запрещены импорт и производство ламп накаливания меньшей мощности [22] .

    С 2005 года на Кубе ограничено использование ламп накаливания мощностью более 15 Вт. [источник не указан 691 день]

    В России

    2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания [23] .

    23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» [24] . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года — мощностью 25 Вт и более.

    Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против — соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны, «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб.

    В связи с вступившим в силу запретом на продажу ламп мощностью более 100 Вт некоторые производители начали выпускать лампы мощностью 93-95 Вт [25] [26] [27] , а некоторые переименовали свои лампы мощностью от 100Вт в «теплоизлучатели различного назначения» и продают так.

    Картель Фебус

    Международный электроламповый картель с административным центром — обществом Phöbus S. A. (Женева, Швейцария), существовавший в 1924—1941 годах, объединял в себе более 40 производителей из разных стран, доля продукции которых на мировом рынке достигала 80 % и имеющий влияние на ценовую, патентную политику. [28]

    По некоторым источникам в 1924 году между участниками картеля была достигнута договорённость об ограничении времени жизни ламп накаливания в 1000 часов. При этом все производители ламп, состоящие в картеле, были обязаны вести строгую техническую документацию по соблюдению мер, предотвращающих 1000-часовое превышение цикла жизни ламп. [29] [30]

    Кроме того картелем были разработаны ныне действующие стандарты цоколя Эдисона. [31]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *