Что является универсальным инструментом для научного познания математика биология физика кибернетика

  • автор:

Применение математики и кибернетики в биологии

Процесс проникновения математики в биологию имеет длительную историю. Однако сильнее всего он проявился в XX в. и главным образом в последние 20–25 лет. Это прежде всего связано с развитием самой биологии, ее теоретических представлений. Системы биологических понятий достигли той степени абстрактности и точности, при которой стало возможным использование математических моделей для описания биологических явлений. Кроме того, структура изучаемых в настоящее время биологических систем оказалась столь сложной, что потребовала для своего анализа разработки новых принципов исследования, основанных на точных математических методах.

Важную роль в математизации биологии сыграло взаимопроникновение наук. Биология издавна испытывала влияние представлений, возникавших в механике и физике. Достаточно вспомнить попытки сравнения скелета позвоночных с системой рычажных механизмов (Леонардо да Винчи, Дж. Борелли). Возникшая из этих попыток биомеханика начала особенно интенсивно развиваться в первой четверти XX в. (Я.И. Грдина, Н.А. Бернштейн и др.). Сближение биологической тематики с физическими и химическими проблемами является одним из путей проникновения в биологию математики, давно играющей важную роль в физике и химии.

Большое значение имели также некоторые идеи, возникшие вне биологии и проникшие в нее в последние десятилетия. Это главным образом идеи теории регулирования и теории информации. Они привели к тому, что существенно изменился подход к регуляторным системам организма, к работе рецепторов и т. д. Понятия «обратной связи», «информации», органически связанные с математическими представлениями, явились существенным каналом проникновения математики в биологию.

Как известно, в последние десятилетия в математике возник ряд новых направлений, связанных с изучением моделей систем высокой степени сложности. К ним относятся теория автоматов, теория игр, теория операций и др. В этой связи биология оказалась для математиков интересным объектом, на котором можно проверить силу новых теорий при помощи вновь созданных математических дисциплин и вычислительных машин.

Более того, источником новых математических идей стала сама биология, Некоторые примеры такого рода могут быть отмечены даже в биологии XIX в. Так, Г. Гельмгольц исследовал некоторые уравнения математической физики в связи со своими работами по физиологии слуха. Известно, что некоторые работы Р. Фишера по математической статистике были связаны с его занятиями биологией. Работы В. Вольтерры по интегральным уравнениям базировались на его исследованиях в области экологии.

Однако именно в настоящее время биология оказывается особенно привлекательной для математика. Сложность таких явлений, как работа мозга, взаимосвязи в биологических сообществах, высокая способность организмов к адаптации, размножению и т. д. привели к выводу, что для их описания потребуется создание новых математических конструкций. Так размышления о математических моделях размножения привели, например, Дж. Неймана к созданию теории самовоспроизводящихся автоматов. Именно биология как источник новых моделей, как наука, изучающая объекты, не имеющие аналогов в физике и технике, и потому позволяющая ставить совершенно новые задачи, привлекла к себе внимание таких математиков, как Р. Беллман, Н. Винер, Г. Вейль, И.М. Гельфанд (Ленинская премия, 1955), А.Н. Колмогоров (Ленинская премия, 1965), А.А. Ляпунов, Дж. Нейман и др.

Некоторые закономерности проникновения математических методов и идей в биологию.

На раннем этапе математика проникала в биологию через посредство смежных наук, прежде всего через механику и физику. При этом случаи применения математических методов носили эпизодический характер. Наиболее известные примеры такого рода дают работы Дж. Борелли (1680–1681) о движении животных, Л. Эйлера (1730), Ж. Пуазейля (1840) и Дж. Стокса (1845) по гемодинамике и Г. Гельмгольца по физиологической оптике (1867) и акустике (1863). При этом биологическая проблема формулировалась как одна из задач механики или физики. Начиная с первой трети XX в. математика получает в биологии систематическое применение для решения собственно биологических проблем и эти науки начинают обходиться без посредников.

Вторая закономерность проникновения математики в биологию связана с изменением способа применения математики. Первоначально систематическое использование математики определялось развитием методов обработки результатов эксперимента, прежде всего, методов математической статистики. На базе использования этих методов возникла специальная наука – биометрия. Кроме того, математика использовалась для сокращенного описания результатов экспериментов, для выявления эмпирических функциональных связей и подбора формул для их описания. Примером может служить часть многочисленных уравнений роста. Однако с течением времени математика все чаще стала использоваться как средство моделирования. В основе такого использования математики лежит формирование системы представлений и гипотез о некотором круге биологических явлений. После того как исходная система представлений сформирована, привлекается формальный аппарат, позволяющий получить выводы и предсказания о возможном характере поведения, о возможных режимах функционирования данной биологической системы. Эти выводы и предсказания должны в принципе допускать экспериментальную проверку. В результате же проверочных экспериментов, в свою очередь, уточняется модель. При таком подходе математическая модель оказывается существенным инструментом теоретического исследования. Математические модели в указанном смысле слова отражают основные, существенные связи между явлениями, известные на данном этапе познания, и позволяют ставить разнообразные мысленные эксперименты, которые порой очень трудно или даже невозможно поставить прямо на изучаемом объекте.

Параллельно с накоплением биологических знаний идет усложнение математических методов, используемых в биологии, причем оно касается всех способов применения математики. Так, в области биометрии в последнее время все шире используются методы многомерных статистик. При описании эмпирического материала вместо элементарных функций сейчас часто используются дифференциальные или интегральные уравнения и т. д. Наиболее существенное изменение и усложнение применяемого в биологии математического аппарата произошло в области математического моделирования. По существу, основным средством математического моделирования еще в первой трети XX в. были дифференциальные и интегральные уравнения и теория вероятностей. В последние десятилетия в математике возник ряд новых направлений, связанных с изучением систем высокой степени сложности (теория автоматов, теория игр, динамическое программирование и т. д.). Можно указать на попытки использования в биологии матричных методов, теории групп, топологических методов и других средств современной математики.

В связи с усложнением математических средств, используемых в биологии, все более широкое применение находят вычислительные машины. Быстрота операций, совершаемых машинами, позволяет обрабатывать большое количество данных и открывает новые возможности для биологического эксперимента. При этом обработка данных может выполняться непосредственно в ходе опыта, так что исследователь получает необходимые результаты тогда, когда еще можно изменить направление эксперимента. Более того, вычислительная машина может сама по заданной программе вести эксперимент, меняя его ход в зависимости от получаемых результатов. Некоторые эксперименты, связанные с исследованиями быстро протекающих процессов, вообще принципиально невыполнимы без использования быстродействующих технических средств.

Еще большее значение имеют вычислительные машины для создания в биологии математических моделей. Биологические системы часто описываются нелинейными уравнениями, системами из большого числа дифференциальных уравнений или сложными логическими схемами, так что после формулировки основных положений анализ модели без использования вычислительной техники оказывается столь трудоемким, что она становится непродуктивной. Таким образом, наряду с появлением новых математических направлений принципиальную роль в математизации биологии стала играть и вычислительная техника.

Дата добавления: 2020-04-25 ; просмотров: 97 ; Мы поможем в написании вашей работы!

Введение

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, медицину. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Моделирование как метод научного познания

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие «модели», которые являются инструментами получения знаний. Модель — это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Процесс моделирования включает три элемента: 1) субъект (исследователь), 2) объект исследования, 3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта. Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В — модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее «поведении». Конечным результатом этого этапа является множество знаний о модели. На третьем этапе осуществляется перенос знаний с модели на оригинал — формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

Четвертый этап — практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им. Для понимания сущности моделирования важно не упускать из виду, что моделирование — не единственный источник знаний об объекте. Процесс моделирования «погружен» в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование — циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Биологическая кибернетика. Кибернетическая система. Ее свойства.

Биологическая кибернетикаявляется составной частью биофизики сложных систем. Биологическая кибернетика имеет большое значение для развития современной биологии, медицины и экологии. Кибернетический подход к изучению функционирования органов, физиологических систем, организма в целом и сообществ организмов позволяет изучить особенности управления и саморегуляции биологических объектов в норме и патологии. Кибернетика— наука об общих законах процессов организации, управления и переработки информации в сложных системах различной физической природы: машинах, технических устройствах, живых организмах. Предмет кибернетики — кибернетическая система— упорядоченная совокупность взаимодействующих объектов (элементов систем), объединенных выполнением определенной функции и способных обмениваться информацией. Элементами кибернетической системы могут быть объекты различной физической природы: неживые предметы, живые объекты, процессы, явления и т.д. Например, элементами ЭВМ являются блоки ЭВМ; мозга — нейроны; коллектива -люди, члены коллектива. Кибернетические системы — сложные системы, сами состоящие из подсистем (А, В . на рис. 10.1), между которыми тоже имеются связи. Эти подсистемы, в свою очередь, также могут состоять из еще более простых кибернетических систем, то есть организация кибернетических систем иерархическая. Каждому уровню иерархии соответствует определенный уровень организации. Живой организм тоже иерархическая система. Биофизика разделяется по уровням организации (иерархиям) живого организма: на молекулярную, клеточную, органную и сложных систем. Характеристики системы, рассматриваемые кибернетикой, ее параметры, делятся на входные параметры: Х1 Х2,.„, Хп, учитывающие воздействие внешней среды на систему, и выходные параметры Y1? Y2. Yn, характеризующие воздействие системы на внешнюю среду Кибернетика изучает динамические системы, в которых протекают сложные процессы, состояние которых непрерывно меняется под влиянием внешних воздействий или в зависимости от фазы функционирования. Состояние динамической системы характеризуется значениями ее параметров не только в данный момент времени, но и в предыдущие моменты времени. Так, человек, как кибернетическая система, — это совокупность протекающих в нем, меняющихся во времени процессов, для характеристики состояния организма человека необходимо знание анамнеза и надо учитывать его связи с окружающей средой. Следует также учитывать то обстоятельство, что в кибернетических системах могут действовать не только динамические законы (законы однозначного соответствия следствия и причин),но и статистические, вероятностные законы, когда можно говорить о большей или меньшей вероятности того или иного следствия данной причины. Статистические законы часто встречаются в медицине, например, когда речь идет о вероятности того или иного исхода болезни, о вероятности осложнений, о вероятности той или иной реакции организма на внешнее воздействие: перемену климата, невесомость, качку, введение лекарственного препарата, облучение и т.д. Поэтому кибернетика широко использует теорию вероятностей — основу ее математического аппарата.

Добавить комментарий

Ваш адрес email не будет опубликован.