1 это что в математике

  • автор:

Величина в математике — это что такое

Величина рассматривается как одна из основ математики, в частности одного из ее разделов — геометрии. Это понятие уходит глубоко в прошлое. Оно было описано в III веке до н. э. древнегреческим математиком Евклидом в его труде «Начала». Люди применяли величины на протяжении более двух тысяч лет, пока они не подверглись ряду обобщений.

Величина в математике — это очень важная тема для изучения в школе. Фактически из понимания детьми величины строится дальнейшее обучение от простого к все более сложному. Измеряя линейкой различные отрезки и площадь, взвешивая на весах массу, определяя скорость, исходя из расстояния и времени, ребенок постепенно учится постигать материальный мир и строит свою картину восприятия, а также определяет для себя роль математики в окружающем мире.

Понятие величины в математике

Формулы площади сектора круга и длины его дуги Вам будет интересно: Формулы площади сектора круга и длины его дуги

Величина в математике — это свойство объектов, которое поддается измерению путем сопоставления с единицей измерения, относящейся к величине этого рода. Выделяют длину, массу, объем, скорость, площадь и время. Говоря простым языком, это то, что можно измерить и выразить числом.

Вячеславна или Вячеславовна? Учимся правильно писать. Вам будет интересно: Вячеславна или Вячеславовна? Учимся правильно писать.

Данный раздел математики ученики проходят еще в начальной школе, и все измерения на этом этапе производятся натуральными числами величины. В математике младших классов такой числовой ряд представляет собой последовательность чисел от 1 и до бесконечности. В старших классах для расчетов величины используются также числа и с отрицательным значением.

Исторический очерк

В древних цивилизациях, в основном в связи с обширным развитием торговли, возникла потребность в измерениях товаров, определении расстояния, времени, расчете посевных площадей и прочего. Сначала люди измеряли предметы при помощи сравнения их с человеком или животным. Но все эти меры были довольно относительными, ведь у каждого свои пропорции тела, а величина в математике — это в первую очередь точность. Поэтому со временем возникла необходимость в создании единого эталона системы величин.

Так, во Франции в 1791 году во время Великой революции единицей измерения длины было принято считать метр, который составлял одну сорокамиллионную часть земного меридиана, пересекающего Париж. Кроме метра была установлена такая величина, как килограмм. Он был равен одному кубическому дециметру воды при температуре 4 °С. А также ар как мера площади, литр и грамм.

Так как в основе новых величин был метр, то и система измерения стала называться метрической. В Национальном архиве Франции до сих пор лежат платиновые эталоны метра в виде линейки со штрихами на концах и килограмма в виде цилиндрической гири.

Русская система измерения

С Древней Руси до принятия в Российской империи метрической системы мер принято было производить замеры с помощью длины локтя, ширины ладони, длины стопы — фут. Расстояние от кончика вытянутой вверх руки до пятки противоположной ноги называлось сажень, расстояние между вытянутыми руками — маховая сажень и т. д. Для измерения расстояния брали, например, слышимость петушиного крика или способность лошади без отдыха добраться из пункта А в пункт Б. Так люди измеряли дальность проложенного маршрута.

Даже сейчас в пословицах и поговорках мы можем встретить напоминания о существовании старинных величин. Об этом свидетельствую такие выражения, как «слышать за версту», «косая сажень в плечах», «мерить на свой аршин» и другие крылатые фразы.

В 1899 году, 4 июня была принята единая метрическая система, которая являлась необязательной. Обязательной она стала 14 сентября 1918 года уже при советской власти, практически сразу после Великой октябрьской революции.

Основные математические величины

Дети в школе, изучая величины в математике, к 4 классу уже имеют широкое представление о таких значениях, как длина, масса, объем, площадь, скорость и время.

  • Под длиной предмета принято понимать характеристику линейного размера. Ее измеряют в миллиметрах, сантиметрах, дециметрах, метрах и километрах. Эту тему в школе дети проходят, начиная с первого класса.
  • Масса предмета — еще одна физическая величина, измеряемая в основном граммами и килограммами. А также объем тел, который исчисляется литрами и миллилитрами. Однако не стоит вводить ребенка в заблуждение и считать массу и вес равными понятиями. Масса — это постоянная величина в математике, в то время как вес зависит от силы и скорости притяжения объекта к земле.
  • Под площадью геометрической фигуры принято понимать занимаемое ею пространство на плоскости, которое исчисляется в мм2, см2, дм2, м2 и км2.
  • Время — понятие довольно относительное и для человека связано с его ощущениями, его нельзя увидеть, но можно почувствовать в смене дня, ночи и времен года. Поэтому для знакомства детей с понятием времени используют точные приборы, такие как песочные часы и часы со стрелкой. Время исчисляется секундами, минутами, часами, днями, годами и так далее.
  • На основании пройденной темы о времени и длине дети изучают понятие скорости. По сути, скорость — это отрезок пути, пройденный за некоторое время.

Бесконечная величина измерения в математике

В старших классах школьниками изучается тема бесконечно малых и больших чисел. Это те числовые значения, которые либо стремятся к нулю, либо к бесконечности. Масса дрейфующей льдины в океане, которая находится в процессе таяния, будет относиться к бесконечной малой величине. Ведь под воздействием беспрерывного тепла лед растает, и масса глыбы будет равна нулю. Противоположным процессом с точки зрения физики является расширение Вселенной. Она стремится к бесконечно большой величине, расширяя свои пределы.

Постоянная и переменная величина

В процессе развития математики величины были разделены на два класса: постоянные и переменные.

Постоянная величина, или так называемая научным языком константа, остается неизменной, то есть при любых условиях она сохраняет свое значение. Например, для расчета длины окружности используется постоянная величина «Пи» = 3,14. Константа Пифагора √2=1,41, используемая в математике, также неизменна. Постоянная величина является частным случаем и рассматривается как переменная величина с одинаковым значением.

Переменная величина в математике — это обратный процесс, который по различным причинам меняет свое числовое значение.

Величина в математике — это что такое

Величина в математике — это очень важная тема для изучения в школе. Фактически из понимания детьми величины строится дальнейшее обучение от простого к все более сложному. Измеряя линейкой различные отрезки и площадь, взвешивая на весах массу, определяя скорость, исходя из расстояния и времени, ребенок постепенно учится постигать материальный мир и строит свою картину восприятия, а также определяет для себя роль математики в окружающем мире.

Понятие величины в математике

Величина в математике — это свойство объектов, которое поддается измерению путем сопоставления с единицей измерения, относящейся к величине этого рода. Выделяют длину, массу, объем, скорость, площадь и время. Говоря простым языком, это то, что можно измерить и выразить числом.

натуральные числа

Данный раздел математики ученики проходят еще в начальной школе, и все измерения на этом этапе производятся натуральными числами величины. В математике младших классов такой числовой ряд представляет собой последовательность чисел от 1 и до бесконечности. В старших классах для расчетов величины используются также числа и с отрицательным значением.

Исторический очерк

В древних цивилизациях, в основном в связи с обширным развитием торговли, возникла потребность в измерениях товаров, определении расстояния, времени, расчете посевных площадей и прочего. Сначала люди измеряли предметы при помощи сравнения их с человеком или животным. Но все эти меры были довольно относительными, ведь у каждого свои пропорции тела, а величина в математике — это в первую очередь точность. Поэтому со временем возникла необходимость в создании единого эталона системы величин.

Так, во Франции в 1791 году во время Великой революции единицей измерения длины было принято считать метр, который составлял одну сорокамиллионную часть земного меридиана, пересекающего Париж. Кроме метра была установлена такая величина, как килограмм. Он был равен одному кубическому дециметру воды при температуре 4 °С. А также ар как мера площади, литр и грамм.

Так как в основе новых величин был метр, то и система измерения стала называться метрической. В Национальном архиве Франции до сих пор лежат платиновые эталоны метра в виде линейки со штрихами на концах и килограмма в виде цилиндрической гири.

Русская система измерения

С Древней Руси до принятия в Российской империи метрической системы мер принято было производить замеры с помощью длины локтя, ширины ладони, длины стопы — фут. Расстояние от кончика вытянутой вверх руки до пятки противоположной ноги называлось сажень, расстояние между вытянутыми руками — маховая сажень и т. д. Для измерения расстояния брали, например, слышимость петушиного крика или способность лошади без отдыха добраться из пункта А в пункт Б. Так люди измеряли дальность проложенного маршрута.

изображения для наглядной демонстрации

Даже сейчас в пословицах и поговорках мы можем встретить напоминания о существовании старинных величин. Об этом свидетельствую такие выражения, как «слышать за версту», «косая сажень в плечах», «мерить на свой аршин» и другие крылатые фразы.

В 1899 году, 4 июня была принята единая метрическая система, которая являлась необязательной. Обязательной она стала 14 сентября 1918 года уже при советской власти, практически сразу после Великой октябрьской революции.

Основные математические величины

Дети в школе, изучая величины в математике, к 4 классу уже имеют широкое представление о таких значениях, как длина, масса, объем, площадь, скорость и время.

  • Под длиной предмета принято понимать характеристику линейного размера. Ее измеряют в миллиметрах, сантиметрах, дециметрах, метрах и километрах. Эту тему в школе дети проходят, начиная с первого класса.

приборы для измерения

  • Масса предмета — еще одна физическая величина, измеряемая в основном граммами и килограммами. А также объем тел, который исчисляется литрами и миллилитрами. Однако не стоит вводить ребенка в заблуждение и считать массу и вес равными понятиями. Масса — это постоянная величина в математике, в то время как вес зависит от силы и скорости притяжения объекта к земле.
  • Под площадью геометрической фигуры принято понимать занимаемое ею пространство на плоскости, которое исчисляется в мм2, см2, дм2, м2 и км2.
  • Время — понятие довольно относительное и для человека связано с его ощущениями, его нельзя увидеть, но можно почувствовать в смене дня, ночи и времен года. Поэтому для знакомства детей с понятием времени используют точные приборы, такие как песочные часы и часы со стрелкой. Время исчисляется секундами, минутами, часами, днями, годами и так далее.

песочные часы

  • На основании пройденной темы о времени и длине дети изучают понятие скорости. По сути, скорость — это отрезок пути, пройденный за некоторое время.

Бесконечная величина измерения в математике

В старших классах школьниками изучается тема бесконечно малых и больших чисел. Это те числовые значения, которые либо стремятся к нулю, либо к бесконечности. Масса дрейфующей льдины в океане, которая находится в процессе таяния, будет относиться к бесконечной малой величине. Ведь под воздействием беспрерывного тепла лед растает, и масса глыбы будет равна нулю. Противоположным процессом с точки зрения физики является расширение Вселенной. Она стремится к бесконечно большой величине, расширяя свои пределы.

Постоянная и переменная величина

В процессе развития математики величины были разделены на два класса: постоянные и переменные.

Постоянная величина, или так называемая научным языком константа, остается неизменной, то есть при любых условиях она сохраняет свое значение. Например, для расчета длины окружности используется постоянная величина «Пи» = 3,14. Константа Пифагора √2=1,41, используемая в математике, также неизменна. Постоянная величина является частным случаем и рассматривается как переменная величина с одинаковым значением.

число пи

Переменная величина в математике — это обратный процесс, который по различным причинам меняет свое числовое значение.

Математика

Матема́тика (от др.-греч. μάθημα  — изучение, наука) — наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания форм реальных объектов [1] . Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов [2] . Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы [3] .

Содержание

Основные сведения

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом первоначально, исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики.

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики (см. ниже).

Этимология

Слово «математика» произошло от др.-греч. μάθημα (máthēma), что означает изучение, знание, наука, и др.-греч. μαθηματικός (mathēmatikós), первоначально означающего восприимчивый, успевающий [4] , позднее относящийся к изучению, впоследствии относящийся к математике. В частности, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), на латыни ars mathematica, означает искусство математики.

В текстах на русском языке слово «математика» или «мафематика» встречается по крайней мере с XVII века, например, у Николая Спафария в «Книге избранной вкратце о девяти мусах и о седмих свободных художествах» (1672 год) [5]

Определения

Одно из первых определений предмета математики дал Декарт [6] :

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

В советское время классическим считалось определение из БСЭ [7] , данное А. Н. Колмогоровым:

Математика… наука о количественных отношениях и пространственных формах действительного мира.

Это определение Энгельса [8] ; правда, далее Колмогоров поясняет, что все использованные термины надо понимать в самом расширенном и абстрактном смысле.

Сущность математики… представляется теперь как учение об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств,— именно тех, которые в качестве аксиом положены в основание теории… Математика есть набор абстрактных форм — математических структур.

Приведём ещё несколько современных определений.

Современная теоретическая («чистая») математика — это наука о математических структурах, математических инвариантах различных систем и процессов [10] .

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований [11] .

Герман Вейль пессимистически оценил возможность дать общепринятое определение предмета математики:

Вопрос об основаниях математики и о том, что представляет собой в конечном счёте математика, остаётся открытым. Мы не знаем какого-то направления, которое позволит в конце концов найти окончательный ответ на этот вопрос, и можно ли вообще ожидать, что подобный «окончательный» ответ будет когда-нибудь получен и признан всеми математиками.

«Математизирование» может остаться одним из проявлений творческой деятельности человека, подобно музицированию или литературному творчеству, ярким и самобытным, но прогнозирование его исторических судеб не поддаётся рационализации и не может быть объективным [12] .

Разделы математики

1. Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе и образованную дисциплинами:

    , : планиметрия и стереометрия
  • теория элементарных функций и элементы анализа

и высшую математику, изучаемую на нематематических специальностях вузов. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности.

Программа обучения по специальности математика [13] образована следующими учебными дисциплинами:

2. Математика как специальность научных работников Министерством образования и науки Российской Федерации [14] подразделяется на специальности:

  • Вещественный, комплексный и функциональный анализ , динамические системы и оптимальное управление и топология и математическая статистика , алгебра и теория чисел и математическая кибернетика

3. Для систематизации научных работ используется раздел «Математика» [15] универсальной десятичной классификации (УДК).

4. Американское математическое общество (AMS) выработало свой стандарт для классификации разделов математики. Он называется Mathematics Subject Classification. Этот стандарт периодически обновляется. Текущая версия — это MSC 2010. Предыдущая версия — MSC 2000.

Обозначения

Вследствие того, что математика работает с чрезвычайно разнообразными и довольно сложными структурами, система обозначений также очень сложна. Современная система записи формул сформировалась на основе европейской алгебраической традиции, а также математического анализа (понятия функции, производной и т. д.). Геометрия испокон века пользовалась наглядным (геометрическим же) представлением. В современной математике распространены также сложные графические системы записи (например, коммутативные диаграммы), нередко также применяются обозначения на основе графов.

Краткая история

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

  1. Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;
  2. Период элементарной математики, начинающийся в VI—V веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);
  3. Период математики переменных величин, охватывающий XVII—XVIII века, «который можно условно назвать также периодом „высшей математики“»;
  4. Период современной математики — математики XIX—XX века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Философия математики

Цели и методы

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Другое направление, наряду с абстрагированием — обобщение. Например, обобщая понятие «пространство» до пространства n-измерений. «Пространство \R^n, при n>3является математической выдумкой. Впрочем, весьма гениальной выдумкой, которая помогает математически разбираться в сложных явлениях». [16]

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

Основания

Вопрос сущности и оснований математики обсуждался со времён Платона. Начиная с XX века наблюдается сравнительное согласие в вопросе, что надлежит считать строгим математическим доказательством, однако отсутствует согласие в понимании того, что в математике считать изначально истинным. Отсюда вытекают разногласия как в вопросах аксиоматики и взаимосвязи отраслей математики, так и в выборе логических систем, которыми следует при доказательствах пользоваться.

Помимо скептического, известны нижеперечисленные подходы к данному вопросу.

Теоретико-множественный подход

Предлагается рассматривать все математические объекты в рамках теории множеств, чаще всего с аксиоматикой Цермело — Френкеля (хотя существует множество других, равносильных ей). Данный подход считается с середины XX века преобладающим, однако в действительности большинство математических работ не ставят задач перевести свои утверждения строго на язык теории множеств, а оперируют понятиями и фактами, установленными в некоторых областях математики. Таким образом, если в теории множеств будет обнаружено противоречие, это не повлечёт за собой обесценивание большинства результатов.

Логицизм

Данный подход предполагает строгую типизацию математических объектов. Многие парадоксы, избегаемые в теории множеств лишь путём специальных уловок, оказываются невозможными в принципе.

Формализм

Данный подход предполагает изучение формальных систем на основе классической логики.

Интуиционизм

Интуиционизм предполагает в основании математики интуиционистскую логику, более ограниченную в средствах доказательства (но, как считается, и более надёжную). Интуиционизм отвергает доказательство от противного, многие неконструктивные доказательства становятся невозможными, а многие проблемы теории множеств — бессмысленными (неформализуемыми).

Конструктивная математика

Конструктивная математика — близкое к интуиционизму течение в математике, изучающее конструктивные построения [прояснить] . Согласно критерию конструктивности — «существовать — значит быть построенным». [17] Критерий конструктивности — более сильное требование, чем критерий непротиворечивости. [18]

Основные темы

Числа

Понятие «число» первоначально относилось к натуральным числам. В дальнейшем оно было постепенно распространено на целые, рациональные, действительные, комплексные и другие числа.

    Числовые системы
Счётные
множества
Натуральные числа (\scriptstyle\mathbb<N>» width=»» height=»» />) • Целые (<img src=Вещественные числа
и их расширения
Вещественные (\scriptstyle\mathbb<R>» width=»» height=»» />) • Комплексные (<img src=Другие
числовые системы
Кардинальные числа • Порядковые числа (трансфинитные, ординал) • p-адические • Супернатуральные числа
См. также Двойные числа • Иррациональные числа • Трансцендентные • Числовой луч • Бикватернион

Преобразования

36 \div 9 = 4 \int 1_S\,d\mu=\mu(S)
Арифметика Дифференциальное и интегральное исчисление Векторный анализ Анализ
\frac<d^2> <dx^2>y = \frac<d> <dx>y + c» width=»» height=»» /></td>
<td> </td>
<td><img loading=
Дифференциальные уравнения Динамические системы Теория хаоса

Структуры

Пространственные отношения

Более наглядные подходы в математике.

Дискретная математика

Дискретная математика включает средства, которые применяются над объектами, способными принимать только отдельные, не непрерывные значения.

\forall x (P(x) \Rightarrow P(x
Математическая логика Теория вычислимости Криптография Теория графов

Коды в системах классификации знаний

    51 (ГРНТИ) (по состоянию на 2001 год): 27 [19]

Онлайновые сервисы

Существует большое число сайтов, предоставляющих сервис для математических расчётов. Большинство из них англоязычные. [20] Из русскоязычных можно отметить сервис математических запросов поисковой системы Nigma.

Добавить комментарий

Ваш адрес email не будет опубликован.