Как читается lg в математике

  • автор:

Что такое логарифм. Как посчитать логарифм. Свойства логарифмов. Примеры решения логарифмов

Chto takoe logarifm

Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.

Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.

В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.

Итак, давайте разбираться, что такое логарифм.

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

Chto takoe logarifm3где a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.Chto takoe logarifm4и преобразовываем вChto takoe logarifm5Запомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Chto takoe logarifm6

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:Chto takoe logarifm7А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Chto takoe logarifm8Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Chto takoe logarifm9

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Chto takoe logarifm10Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100Chto takoe logarifm11

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Chto takoe logarifm12

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

Chto takoe logarifm12

И вычислить его можно таким образом:Chto takoe logarifm13

Основные свойства логарифмов

Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:

Chto takoe logarifm2

Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!

Рассмотрим свойства логарифмов на примерах.

Логарифмический ноль и логарифмическая единица

Chto takoe logarifm14

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:

loga 1 = 0 – логарифмический ноль.

Основное логарифмическое тождество

Chto takoe logarifm16

Chto takoe logarifm17

В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.

Вторая формула по сути является просто переформулированным определением логарифма

Разберем применение тождества на примере:

Необходимо найти значение выраженияChto takoe logarifm18Сначала преобразуем логарифм

Chto takoe logarifm19Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:Chto takoe logarifm20Теперь применим основное логарифмическое тождество и получим:Chto takoe logarifm21

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать:Chto takoe logarifm22Chto takoe logarifm23Логарифмы с одинаковыми основаниями можно вычитать:Chto takoe logarifm24Chto takoe logarifm25Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Вынесение показателя степени из логарифма

Вынесение показателя степени из логарифма:

Chto takoe logarifm26Chto takoe logarifm27Chto takoe logarifm28Chto takoe logarifm29

Переход к новому основанию

Chto takoe logarifm30

Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.

Разберем на примере.

Необходимо найти значение такого выраженияChto takoe logarifm31Для начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:

Chto takoe logarifm32

Теперь применим переход к новому основанию для второго логарифма:Chto takoe logarifm33Подставим полученные результаты в исходное выражение:Chto takoe logarifm34

10 примеров логарифмов с решением

1. Найти значение выраженияChto takoe logarifm352. Найти значение выраженияChto takoe logarifm363. Найти значение выраженияChto takoe logarifm374. Найти значение выраженияChto takoe logarifm385. Найти значение выраженияChto takoe logarifm396. Найти значение выраженияChto takoe logarifm40Сначала найдем значениеChto takoe logarifm41Для этого приравняем его к Х:Chto takoe logarifm42Тогда изначальное выражение принимает вид:

Chto takoe logarifm437. Найти значение выраженияChto takoe logarifm44Преобразуем наше выражение:Chto takoe logarifm45Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим: Chto takoe logarifm468. Найти значение выраженияChto takoe logarifm47Так как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:Chto takoe logarifm489. Найти значение выраженияChto takoe logarifm49Так как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:Chto takoe logarifm50Подставляем полученные значения в исходное выражение:

10. Найти значение выраженияChto takoe logarifm51Обращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:Chto takoe logarifm53

Десятичный логарифм числа

Результатом вычисления логарифма числа является показатель степени, в которую необходимо возвести одно число для получения другого.

  • Определение десятичного логарифма
  • Свойства десятичного логарифма
  • Таблица десятичных логарифмов
  • График десятичного логарифма

Определение десятичного логарифма

Десятичный логарифм — это логарифм, основанием которого является число 10. Обозначается как lg и пишется следующим образом:

lg y является решением уравнения y = 10 x . Другими словами, в какую степень ( x ) необходимо возвести число 10, чтобы получить y .

Десятичный логарифм

Определение. Логарифмом числа b по основанию a , где a > 0 , a ≠ 1 , b > 0 , называется показатель степени, в которую нужно возвести основание a , чтоб получить число b .

Определение. Десятичный логарифм — логарифм по основанию 10.

Другими словами, десятичный логарифм числа b является решением уравнения 10 x = b .

Обозначение. Десятичный логарифм обозначается lg x или log x .

Калькулятор десятичных логарифмов

Свойства десятичного логарифмов

lg x = log10 x — так как основание десятичного логарифма равно 10.

lg( x · y ) = lg x + lg y

lg x y = lg x — lg y

График функции y = lg x

(lg x )′ = 1 x ln 10

lg x dx = x lg x — x ln 10 + C
lim lg x = -∞
x → +0

lg 100 = lg 10 2 = 2

lg 1000 = lg 10 3 = 3

lg 0.1 = lg 10 -1 = -1

lg 0.01 = lg 10 -2 = -2

lg 0.001 = lg 10 -3 = -3

Доказать равенство: a lg b = b lg a .

Запишем очевидное равенство:

lg b · lg a = lg a · lg ab

Возведем 10 в соответствующие степени

10 lg b · lg a = 10 lg a · lg b

(10 lg b ) lg a = (10 lg a ) lg b

Зная, что lg 2 = a , lg 3 = b , lg 5 = c , выразить lg 6; lg 30; lg 16 через a, b, c.

Используем формулы логарифма произведения и степени получим:

lg 6 = lg (2·3)= lg 2 + lg 3 = a + b ;

lg 30 = lg (5·2·3)= lg 5 + lg 2 + lg 3 = a + b + c ;

lg 16 = lg 2 4 = 4 · lg 2 = 4 a .

Вычислить log9 5 · log25 27.

Перейдем к основе 10:

log9 5 · log25 27 = lg 5 lg 9 · lg 27 lg 25

Используем свойство логарифма степени lg x n = n lg x :

lg 5 lg 9 · lg 27 lg 25 = lg 5 lg 3 2 · lg 3 3 lg 5 2 = lg 5 2 lg 3 · 3 lg 3 2 lg 5 = 3 4

Вычислить log30 8, если lg 5 = a , lg 3 = b .

Перейдем к основе 10:

log 30 8 = lg 8 lg 30 = lg 2 3 lg (3 · 10) =

Используем свойство логарифма степени, произведения, частного и то что 2= 10 5 :

= 3 lg 2 lg 3 + lg 10 = 3 lg 2 lg 3 + 1 = 3 lg 10 5 lg 3 + 1 = 3(lg 10 — lg 5) lg 3 + 1 = 3(1 — lg 5) lg 3 + 1 =

Подставим lg 5 = a , lg 3 = b :

log30 8 = 3(1 — a ) b + 1

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Добавить комментарий

Ваш адрес email не будет опубликован.