Что является примером математической модели в информатике

  • автор:

Что такое модель в информатике? Виды, примеры

В описываемой статье мы разберем подробно, что такое модель в информатике. Рассмотрим виды, а также способы проектирования. В данном разделе имеется множество полезных знаний, которые позволят будущим специалистам в сфере информационных технологий работать без каких-либо усилий. Для того чтобы решить любую задачу, причем неважно, научную или производственную, следует придерживаться цепочки: объект, модель, алгоритм, программа, результат, реализация. Нужно обратить внимание на второй пункт. Если этого звена не будет, то и сама проектировка не подлежит исполнению. Для чего же используется модель, и что под этим словом подразумевается? Далее раскроем этот вопрос.

Что такое модель в информатике?

Модель

Что такое модель в информатике? Благодаря ей можно составить образ какого-либо объекта, который реально существует. Также при необходимости можно отобразить все его свойства и признаки.

Для того чтобы решить какую-то задачу, следует сделать ее модель, ведь именно она и будет использоваться при дальнейшем проектировании. В школьном курсе информатики данные понятия вводятся уже в шестом классе. Однако в самом начале учат детей лишь пониманию, что же это такое.

Классификация

Описываемым термином можно назвать описание какого-либо процесса, его изображение, схему, уменьшенную копию реального объекта и так далее. Учитывая все вышеперечисленное, следует сказать, что модель — довольно широкое понятие. Его можно разделить на группы: материальное, идеальное.

Под первым типом понимают комплекс данных, который представляет собой реальный объект. Это может быть либо тело, либо процесс и так далее. Данная группа делится еще на два типа: физические, аналоговые. Эта классификация полностью условная, так как между указанными двумя подвидами нет никакой четкой черты.

Идеальную модель охарактеризовать еще труднее, потому что она связана полностью с воображением человека, его восприятием мира. К ней также можно отнести и любое произведение искусства, в том числе картины, прозу, спектакли и так далее.

Модель класса информатики

Цели моделирования

Рассматривая, что такое модель в информатике, необходимо также сказать и о целях ее создания.

Моделирование — довольно важный этап, так как он позволяет осуществить большое количество задач. Именно об этом мы далее и поговорим.

Для начала, моделирование позволит человеку больше узнать о том, что его окружает. Если говорить в обширном смысле, то в самой древности люди собирали какие-то данные, информацию, факты и передавали из поколения в поколение. Примером можно назвать модель нашего мира, которая называется “глобус”. В прошлые века, как правило, моделирование было построено на несуществующих объектах, с трудом познаваемыми человеком, которые на данный момент уже имеют свою реализацию в качестве материального предмета. Большинство из них прочно закрепились в нашей жизни. Речь может идти о зонтах, мельницах и так далее.

На данный момент модели систем информатики касаются путей достижения максимального эффекта от принимаемых решений, а также обращают внимание на последствия какого-либо процесса или же действия. Если говорить о последнем подпункте, то в пример можно привести модель, которая выясняет, какие последствия будут в результате повышения стоимости проезда либо после утилизации каких-либо отходов под землей.

Задачи моделирования

Рассматривая, что такое модель в информатике, необходимо еще сказать о задачах данного способа проектирования. Описываемый процесс имеет несколько общих целей, о которых мы и поговорим далее. Если рассматривать более детально, то задачами являются этапы решения каких-либо проблем. То есть, в принципе, таковой можно назвать небольшую цель, с которой необходимо справиться, чтобы достигнуть определенных высот.

Модель - это (в информатике)

Классификация задач

При этом делятся данные задачи на две группы. Речь идет о прямых и обратных. Что касается последних, то подобные формулировки ставят перед разработчиком вопросы типа: “Как увеличить эффективность до максимума?” или “Какое же действие полностью удовлетворит имеющееся условие?” Если говорится о прямых, то такие задачи ставят перед человеком вопросы о том, что будет, если разработчик поступит так или иначе. Нужно заметить: любая прямая формулировка имеет исходные данные, а также ставит конкретные условия.

Вербальная модель

Также необходимо рассказать о видах моделей в информатике. Рассмотрим первую: вербальную. Такой метод моделирования позволяет работать с идеальными или абстрактными вопросами. Следует заметить, что в науке считаются двумя основными видами математический и информационный. Хоть и вербальный на данный момент не сильно распространен, однако он используется. Под ним подразумевают, что все задачи, цели и так далее описываются с помощью букв и связанных предложений. К таковым моделям можно отнести обычную художественную литературу, составленный протокол, какие-либо правила, информацию, описание предмета, явления и так далее.

Информационные модели в информатике

Математическая модель

Математическая модель — это в информатике один из главных видов проектирования. Она еще известна, как алгоритмическая. Следует заметить, что между математическим и информационным видами граница максимально условная. Об этом уже говорилось ранее.

Если не задаваться сложными терминами, а попытаться объяснить простым языком, то описываемая модель необходима для того, чтобы решить любую задачу или достигнуть цель при помощи математической точки зрения. Следует заметить, что каждый человек в реальной жизни занимается постоянно проектированием такой модели. Допустим, обычная бытовая задача, например, купить что-то в магазине, требует составления таковой. Человек знает, сколько стоят продукты. Необходимо посчитать, какая сумма в итоге нужна для осуществления покупки, сложив все данные. Это является обычным примером математической модели.

Примеры моделей в информатике

Информационная модель

Далее рассмотрим информационную модель в информатике. Ее проектирование изучается в школе. Преподается как базовый тип.

Следует заметить, что с этим видом моделирования нужно ознакомиться любому человеку, который видит свое будущее в IT-сфере. Как правило, все информационные модели создаются при помощи компьютерной техники. Причем речь идет не только конкретно о проектировании каких-то диаграмм, но используются еще и таблицы, рисунки, чертежи, схемы и так далее.

В целом информационная модель представляет собой свойства того объекта, который мы отображаем, максимально описывая его состояние, а также то, насколько он связан с окружающим миром, отношение к другим внешним предметам и влияние на них. Следует отметить, что информационной моделью может служить обычный текст, рисунок, словесное описание, чертеж, формула и так далее.

Такой вид отличается от других вышеперечисленных тем, что он является данными. То есть модель не имеет материального воплощения, так как считается примитивным комплексом информации, представленной в разном виде.

Модель данных (информатика)

Системный подход к созданию модели

Классификацию моделей в информатике мы уже рассмотрели, теперь следует сказать о том, какой подход следует использовать, чтобы составить идеальную схему.

Необходимо понять, что такое система. Это комплекс элементов, которые взаимодействуют между собой, а также работают вместе для того, чтобы выполнить определенную задачу. Построение модели связано с использованием системного подхода. Объектом будет считаться любой комплекс, который функционирует в качестве единого в специальной среде. Иногда бывает так, что проект довольно сложный, поэтому систему делят на две части.

Цель использования

Приведем примеры моделей в информатике, для того чтобы понять, какими целями руководствуются производители при создании записи.

Следует заметить, что есть такие виды, как учебные, имитационные, игровые и так далее. Рассмотрим их.

К учебным относятся все материалы, при помощи которых осуществляется обучение.

К опытным следует добавить модели уменьшенной копии, создаваемые на основе реальных объектов.

Имитационные могут служить информацией, которая позволит понять, что произойдет в результате какого-либо действия. К примеру, если человек проводит реформу, он должен составить такую модель. Это поможет приблизительно понять то, как люди отреагируют на новые изменения. Либо же, например, чтобы человеку сделать операцию по пересадке какого-либо органа, в самом начале исследований проводится большое количество опытов. Их также можно назвать имитационной моделью. Таким образом, она представляет собой систему проб и ошибок. Это позволяет принимать более оправданные решения.

Игровой моделью является система, которая ставит определенные объекты в какие-либо рамки. Это может быть экономическая, деловая или военная игра. Таким образом, человек способен понять поведение определенного объекта в нужной ему среде.

Научно-техническую следует использовать для того, чтобы изучить какое-либо явление и процесс, который трудно исследовать в обычной жизни. Это может быть создание прибора, имитирующий грозовой разряд, либо же модель движения, полностью копирующая солнечную систему.

Модели системы (информатика)

Способ представления

Подытоживая все вышесказанное о моделях данных в информатике, необходимо разузнать, как же представляется созданная запись.

Она бывает материальная и нематериальная. К первому виду нужно отнести все копии, которые были сняты с существующих объектов. Таким образом, их можно взять в руки, потрогать, понюхать и так далее. Они даже способны имитировать какие-либо свойства оригинального объекта, а также его действия. Данные материальные модели являются опытным методом проектирования.

К нематериальным относятся те, которые работают на теории. Они идеальные либо же абстрактные. Эта категория также имеет несколько типов. Речь идет об информационных, а еще воображаемых вариантах. Первый представляет собой перечень данных, который касается определенного объекта. Таковыми можно назвать таблицы, рисунки, схемы и так далее.

Однако многих их интересует, почему же данная модель класса информатики считается нематериальной. Текст хоть и напечатан, таблица составлена, но его потрогать нельзя. Именно поэтому данная модель является абстрактной. К слову, среди информационных вариантов записи имеются наглядные примеры.

К воображаемой модели относят то, что называется творческим процессом, то есть все происходящее в сознании человека. Это побуждает его создать на основе данной схемы оригинальный объект.

Лекция: Понятие математической модели.

В моделировании есть два различных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Например, это игрушечный кораблик, самолетик, домик из кубиков и множество других известных вам натурных моделей. Модель может отображать реальность в абстрактной форме. В таком случае почти всегда привлекаются средства математики, и мы имеем дело с математической моделью: математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств.Собственно говоря, в историческом аспекте, сама математика обязана своим существованием тому, что пыталась отражать, т. е. моделировать, на своем специфическом языке закономерности окружающего мира.

Под математической моделью понимают систему математических соотношений – формул, уравнений, неравенств и т. д., отражающих существенные свойства объекта или процесса.

Математическое моделирование в наше время гораздо более всеобъемлюще, нежели моделирование натурное. Математический аппарат для моделирования объектов и процессов реального мира ученые использовали очень давно, но огромный толчок математическому моделированию дало появление ЭВМ, которые сегодня помогают в этой деятельности. Использование математического моделирования является самым общим методом научных исследований.

Вывод: при математическом моделировании исследование объекта осуществляется посредством изучения модели, сформулированной на языке математики, с использованием тех или иных методов.

Простой пример: представьте себе, что нужно определить площадь поверхности письменного стола. Как обычно поступают в таком случае? Измеряют длину и ширину стола, а затем перемножают полученные числа. Это фактически означает, что реальный объект – поверхность стола – заменяется абстрактной математической моделью прямоугольником. Площадь этого прямоугольника и считается искомой. Как видите, из всех свойств стола мы выделили три: форма поверхности (прямоугольник) и длины двух сторон. Для нас не важны ни цвет стола, ни материал, из которого он сделан, ни то, как он используется. Если бы мы решали другую задачу о столе (скажем, сколько стоит изготовление стола), то возможно, для нас важна была бы как раз эта информация. Предположив, что поверхность стола – прямоугольник, мы легко указываем исходные данные и результат. Они связаны соотношением

S=a×b. Сделанное предположение позволило “перевести” нашу задачу на язык чисел: и исходные данные, и результат – числа, а соотношение между ними задается математической формулой.

Анализировать математические модели проще и быстрее, чем экспериментально определять поведение реального объекта. Кроме того, анализ математической модлели позволяет выделить наиболее существенные свойства данного объекта (процесса), на которые надо обратить особое внимание при принятии решения.

Этапы решения задач на компьютере:

1. Постановка задачи –точная формулировка условий и целей решения, описания наиболее существенных свойств объекта.

2. Построение математической модели– описания наиболее существенных свойств объекта с помощью математических формул.

Пример математической модели. Определение, классификация и особенности

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос – это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

пример математической модели

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые — на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Классификация по отрасли науки

Применение математических моделей в физике, социологии, химии и так далее

По математическому аппарату, который используется в процессе моделирования

Модели на основе дифференциальных уравнений, дискретных алгебраических преобразований и тому подобное

По целям моделирования

Согласно данному принципу, выделяют описательные, оптимизационные, многокритериальные, игровые и имитационные модели

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

математическая модель примеры задачи

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

В данном случае результат зависит от входных данных

Описание случайных процессов. В данном случае результат остается неопределенным

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

экономико математическая модель пример

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

экономико математическая модель пример задачи

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Варианты возможных действий

Исход конфликта (выигрыш или проигрыш).

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше – множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

экономико математическая модель примеры решения задач

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, имитационные модели используются для описания большой системы. Математическое заключение – это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых — приведенные в таблице ниже.

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

построение математической модели пример

В этом разделе кратко осветим вопрос экономико-математических моделей. Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель – это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи – максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р – это прибыль за единицу, х – это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

математическое моделирование примеры моделей

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб – обитатели северных морей;
  • 20% улова – обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х – это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Экономико-математическая модель

Экономико-математическая модель — это выраженная в формально-математических терминах экономическая абстракция, логическая структура которой определяется как объективными свойствами предметами описания, так и субъективным целевым фактором исследования, для которого это описание предпринимается.

Между моделью и ее прототипом не может существовать взаимооднозначного соответствия, так как модель — это абстракция, связанная с обобщениями и потерей информации. Адекватность реальной действительности — основное требование ,предъявляемое к модели.

Конструктивно каждая математическая модель представляет собой совокупность взаимосвязанных математических зависимостей , отражающих определенные группы реальных экономических зависимостей.

Классифицируются экономико-математические модели по различным признакам, в том числе и по математическому инструменту, применяемому при моделировании.

Наиболее распространенными и эффективными математическими методами, которые нашли как теоретическое, так и практическое приложение в экономических исследованиях, являются: дифференциальное исчисление, математическая статистика, линейная алгебра, математическое программирование и другие.

Порядок построения экономико-математической модели

Для построения экономико-математической модели определяется объект исследования: экономика государства в целом, отрасль, предприятие, цех и т.п.

Формулируется цель исследования.

В рассматриваемом экономическом объекте выделяются структурные и функциональные элементы и выделяются наиболее существенные качественные характеристики этих элементов, влияющие на достижения поставленной цели.

Вводятся символические обозначения для учитываемых характеристик экономического объекта. Определяется, какие из них будут рассматриваться как зависимые величины, а какие как независимые.

Формализуются взаимосвязи между определенными параметрами модели, т.е. строится собственно экономико-математическая модель.

Проводятся расчеты по модели и анализируются результаты полученных расчетов.

Если результаты оказываются неудовлетворительными с точки зрения неадекватности отображения моделируемого процесса или явления ,то происходит возврат к одному из предшествующих пунктов и процесс повторяется.

Пример экономико-математической модели

Структуру предприятия удобно описывать организационной моделью, которая демонстрирует состав функциональных подразделений предприятия и связи их подчинения и взаимодействия.

При функциональной организационной структуре предприятие подразделяется на элементы, каждый из которых имеет свои задачи и обязанности. Характеристики и особенности того или иного подразделения соответствуют наиболее важным направлениям деятельности предприятия.

Функциональная организационная модель предприятия на примере ОАО швейная фабрика «Березка»:

Такой вид организационной модели , как правило, встречается в крупных организациях, когда необходимо обеспечить слаженную совместную работу большого числа функциональных подразделений.

Объектом исследования будет являться швейная фабрика «Березка», целью исследования — оценка эффективности работы выпуска продукции. Более подробно для разрешения поставленной цели будем рассматривать функциональный и структурный элемент объекта — производство.

Наиболее существенные и качественные характеристики этого элемента представлены ниже в таблице 1 за временной период с мая 2005 по май 2006.

Для построения экономико-математической модели применен метод математической статистики.

Расчеты по модели и анализ полученных результатов при использовании данного метода включает в себя этапы:

Добавить комментарий

Ваш адрес email не будет опубликован.